Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1309946, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292826

RESUMO

Osteoarthritis (OA), as a degenerative disease, leads to high socioeconomic burdens and disability rates. The knee joint is typically the most affected and is characterized by progressive destruction of articular cartilage, subchondral bone remodeling, osteophyte formation and synovial inflammation. The current management of OA mainly focuses on symptomatic relief and does not help to slow down the advancement of disease. Recently, mesenchymal stem cells (MSCs) and their exosomes have garnered significant attention in regenerative therapy and tissue engineering areas. Preclinical studies have demonstrated that MSC-derived exosomes (MSC-Exos), as bioactive factor carriers, have promising results in cell-free therapy of OA. This study reviewed the application of various MSC-Exos for the OA treatment, along with exploring the potential underlying mechanisms. Moreover, current strategies and future perspectives for the utilization of engineered MSC-Exos, alongside their associated challenges, were also discussed.

2.
Mod Pathol ; 37(2): 100398, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043788

RESUMO

Immunohistochemistry (IHC) is a well-established and commonly used staining method for clinical diagnosis and biomedical research. In most IHC images, the target protein is conjugated with a specific antibody and stained using diaminobenzidine (DAB), resulting in a brown coloration, whereas hematoxylin serves as a blue counterstain for cell nuclei. The protein expression level is quantified through the H-score, calculated from DAB staining intensity within the target cell region. Traditionally, this process requires evaluation by 2 expert pathologists, which is both time consuming and subjective. To enhance the efficiency and accuracy of this process, we have developed an automatic algorithm for quantifying the H-score of IHC images. To characterize protein expression in specific cell regions, a deep learning model for region recognition was trained based on hematoxylin staining only, achieving pixel accuracy for each class ranging from 0.92 to 0.99. Within the desired area, the algorithm categorizes DAB intensity of each pixel as negative, weak, moderate, or strong staining and calculates the final H-score based on the percentage of each intensity category. Overall, this algorithm takes an IHC image as input and directly outputs the H-score within a few seconds, significantly enhancing the speed of IHC image analysis. This automated tool provides H-score quantification with precision and consistency comparable to experienced pathologists but at a significantly reduced cost during IHC diagnostic workups. It holds significant potential to advance biomedical research reliant on IHC staining for protein expression quantification.


Assuntos
Aprendizado Profundo , Humanos , Imuno-Histoquímica , Hematoxilina/metabolismo , Algoritmos , Núcleo Celular/metabolismo
3.
Front Pharmacol ; 14: 1324764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143503

RESUMO

The clinical application of reactive oxygen species (ROS)-mediated tumor treatment has been critically limited by inefficient ROS generation. Herein, we rationally synthesized and constructed the three-dimensional PdMo nanoflowers through a one-pot solvothermal reduction method for elaborately regulated peroxidase-like enzymatic activity and glutathione peroxidase-like enzymatic activity, to promote oxidation ROS evolvement and antioxidation glutathione depletion for achieving intensive ROS-mediated tumor therapy. The three-dimensional superstructure composed of two-dimensional nanosheet subunits can solve the issues by avoiding the appearance of tightly stacked crystalline nanostructures. Significantly, Mo is chosen as a second metal to alloy with Pd because of its more chemical valence and negative ionization energy than Pd for improved electron transfer efficiencies and enhanced enzyme-like activities. In addition, the photothermal effect generated by PdMo nanoflowers could also enhance its enzymatic activities. Thus, this work provides a promising paradigm for achieving highly ROS-mediated tumor therapeutic efficacy by regulating the multi-enzymatic activities of Pd-based nanoalloys.

4.
JCO Clin Cancer Inform ; 7: e2300104, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37956387

RESUMO

PURPOSE: Osteosarcoma research advancement requires enhanced data integration across different modalities and sources. Current osteosarcoma research, encompassing clinical, genomic, protein, and tissue imaging data, is hindered by the siloed landscape of data generation and storage. MATERIALS AND METHODS: Clinical, molecular profiling, and tissue imaging data for 573 patients with pediatric osteosarcoma were collected from four public and institutional sources. A common data model incorporating standardized terminology was created to facilitate the transformation, integration, and load of source data into a relational database. On the basis of this database, a data commons accompanied by a user-friendly web portal was developed, enabling various data exploration and analytics functions. RESULTS: The Osteosarcoma Explorer (OSE) was released to the public in 2021. Leveraging a comprehensive and harmonized data set on the backend, the OSE offers a wide range of functions, including Cohort Discovery, Patient Dashboard, Image Visualization, and Online Analysis. Since its initial release, the OSE has experienced an increasing utilization by the osteosarcoma research community and provided solid, continuous user support. To our knowledge, the OSE is the largest (N = 573) and most comprehensive research data commons for pediatric osteosarcoma, a rare disease. This project demonstrates an effective framework for data integration and data commons development that can be readily applied to other projects sharing similar goals. CONCLUSION: The OSE offers an online exploration and analysis platform for integrated clinical, molecular profiling, and tissue imaging data of osteosarcoma. Its underlying data model, database, and web framework support continuous expansion onto new data modalities and sources.


Assuntos
Gerenciamento de Dados , Osteossarcoma , Criança , Humanos , Bases de Dados Factuais , Genômica , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/genética
5.
Cell Cycle ; 22(19): 2142-2160, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37950881

RESUMO

The mucosal renewal, which depends on the intestinal stem cell (ISC) activity, is the foundation of mucosal repairment. Importantly, activation of reserve ISCs (rISCs) plays a vital role in initiating mucosal repair after injury. However, the underlying regulatory mechanism of rISCs activation in chickens remains unclear. In this study, immediately after lipopolysaccharide (LPS) challenge, mitochondrial morphological destruction and dysfunction appeared in the crypt, accompanied by decreased epithelial secretion (decreased Muc2 mRNA abundance and LYSOZYME protein level). However, immediately after mucosal injury, the mucosal renewal accelerated, as indicated by the increased BrdU positive rate, proliferating cell nuclear antigen (PCNA) protein level and mRNA abundance of cell cycle markers (Ccnd1, Cdk2). Concerning the ISCs activity, during the early period of injury, there appeared a reduction of active ISCs (aISCs) marker Lgr5 mRNA and protein, and an increasing of rISCs marker Hopx mRNA and protein. Strikingly, upon LPS challenge, increased mRNA transcriptional level of Krüppel-like factor 5 (Klf5) was detected in the crypt. Moreover, under LPS treatment in organoids, the KLF5 inhibitor (ML264) would decrease the mRNA and protein levels of Stat5a and Hopx, the STAT5A inhibitor (AC-4-130) would suppress the Lgr5 mRNA and protein levels. Furthermore, the Dual-Luciferase Reporter assay confirmed that, KLF5 would bind to Hopx promoter and activate the rISCs, STAT5A would trigger Lgr5 promoter and activate the aISCs. Collectively, KLF5 was upregulated during the early period of injury, further activate the rISCs directly and activate aISCs via STAT5A indirectly, thus initiate mucosal repair after injury.


Assuntos
Galinhas , Mucosa Intestinal , Animais , Galinhas/genética , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Fatores de Transcrição/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546786

RESUMO

Motivation: Spatial transcriptomics (ST) enables a high-resolution interrogation of molecular characteristics within specific spatial contexts and tissue morphology. Despite its potential, visualization of ST data is a challenging task due to the complexities in handling, sharing and visualizing large image datasets together with molecular information. Results: We introduce ScopeViewer, a browser-based software designed to overcome these challenges. ScopeViewer offers the following functionalities: (1) It visualizes large image data and associated annotations at various zoom levels, allowing for intricate exploration of the data; (2) It enables dual interactive viewing of the original images along with their annotations, providing a comprehensive understanding of the context; (3) It displays spatial molecular features with optimized bandwidth, ensuring a smooth user experience; and (4) It bolsters data security by circumventing data transfers. Availability: ScopeViewer is available at: https://datacommons.swmed.edu/scopeviewer.

7.
Mod Pathol ; 36(8): 100196, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100227

RESUMO

Microscopic examination of pathology slides is essential to disease diagnosis and biomedical research. However, traditional manual examination of tissue slides is laborious and subjective. Tumor whole-slide image (WSI) scanning is becoming part of routine clinical procedures and produces massive data that capture tumor histologic details at high resolution. Furthermore, the rapid development of deep learning algorithms has significantly increased the efficiency and accuracy of pathology image analysis. In light of this progress, digital pathology is fast becoming a powerful tool to assist pathologists. Studying tumor tissue and its surrounding microenvironment provides critical insight into tumor initiation, progression, metastasis, and potential therapeutic targets. Nucleus segmentation and classification are critical to pathology image analysis, especially in characterizing and quantifying the tumor microenvironment (TME). Computational algorithms have been developed for nucleus segmentation and TME quantification within image patches. However, existing algorithms are computationally intensive and time consuming for WSI analysis. This study presents Histology-based Detection using Yolo (HD-Yolo), a new method that significantly accelerates nucleus segmentation and TME quantification. We demonstrate that HD-Yolo outperforms existing WSI analysis methods in nucleus detection, classification accuracy, and computation time. We validated the advantages of the system on 3 different tissue types: lung cancer, liver cancer, and breast cancer. For breast cancer, nucleus features by HD-Yolo were more prognostically significant than both the estrogen receptor status by immunohistochemistry and the progesterone receptor status by immunohistochemistry. The WSI analysis pipeline and a real-time nucleus segmentation viewer are available at https://github.com/impromptuRong/hd_wsi.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Microambiente Tumoral , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Mama/patologia
8.
Angew Chem Int Ed Engl ; 62(27): e202302809, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37075196

RESUMO

Here, we report a new class of peptidomimetic macrocycles with well-defined three-dimensional structures and low conformational flexibility. They are assembled from fused-ring spiro-ladder oligomers (spiroligomers) by modular solid-phase synthesis. Two-dimensional nuclear magnetic resonance confirms their shape persistency. Triangular macrocycles of tunable sizes assemble into membranes with atomically precise pores, which exhibit size and shape-dependent molecular sieving towards a series of structurally similar compounds. The exceptional structural diversity and stability of spiroligomer-based macrocycles will be explored for more applications.

9.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945650

RESUMO

The emerging field of spatially resolved transcriptomics (SRT) has revolutionized biomedical research. SRT quantifies expression levels at different spatial locations, providing a new and powerful tool to interrogate novel biological insights. An essential question in the analysis of SRT data is to identify spatially variable (SV) genes; the expression levels of such genes have spatial variation across different tissues. SV genes usually play an important role in underlying biological mechanisms and tissue heterogeneity. Currently, several computational methods have been developed to detect such genes; however, there is a lack of unbiased assessment of these approaches to guide researchers in selecting the appropriate methods for their specific biomedical applications. In addition, it is difficult for researchers to implement different existing methods for either biological study or methodology development. Furthermore, currently available public SRT datasets are scattered across different websites and preprocessed in different ways, posing additional obstacles for quantitative researchers developing computational methods for SRT data analysis. To address these challenges, we designed Spatial Transcriptomics Arena (STAr), an open platform comprising 193 curated datasets from seven technologies, seven statistical methods, and analysis results. This resource allows users to retrieve high-quality datasets, apply or develop spatial gene detection methods, as well as browse and compare spatial gene analysis results. It also enables researchers to comprehensively evaluate SRT methodology research in both simulated and real datasets. Altogether, STAr is an integrated research resource intended to promote reproducible research and accelerate rigorous methodology development, which can eventually lead to an improved understanding of biological processes and diseases. STAr can be accessed at https://lce.biohpc.swmed.edu/star/ .

11.
Nat Commun ; 13(1): 3328, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680911

RESUMO

Gene expression covaries with brain activity as measured by resting state functional magnetic resonance imaging (MRI). However, it is unclear how genomic differences driven by disease state can affect this relationship. Here, we integrate from the ABIDE I and II imaging cohorts with datasets of gene expression in brains of neurotypical individuals and individuals with autism spectrum disorder (ASD) with regionally matched brain activity measurements from fMRI datasets. We identify genes linked with brain activity whose association is disrupted in ASD. We identified a subset of genes that showed a differential developmental trajectory in individuals with ASD compared with controls. These genes are enriched in voltage-gated ion channels and inhibitory neurons, pointing to excitation-inhibition imbalance in ASD. We further assessed differences at the regional level showing that the primary visual cortex is the most affected region in ASD. Our results link disrupted brain expression patterns of individuals with ASD to brain activity and show developmental, cell type, and regional enrichment of activity linked genes.


Assuntos
Transtorno do Espectro Autista , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Expressão Gênica , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais
12.
Org Lett ; 24(18): 3421-3425, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35499925

RESUMO

We report the fluorenylmethoxycarbonyl (Fmoc) protection of functionalized bis-amino acid building blocks using a temporary Cu2+ complexation strategy, together with an efficient multikilogram-scale synthesis of bis-amino acid precursors. This allows the synthesis of stereochemically and functionally diverse spiroligomers utilizing solid-phase Fmoc/tBu chemistry to facilitate the development of applications. Four tetramers were assembled on a semiautomated microwave peptide synthesizer. We determined their secondary structures with two-dimensional nuclear magnetic resonance spectroscopy.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Fluorenos/química , Espectroscopia de Ressonância Magnética
13.
Front Plant Sci ; 13: 820585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283919

RESUMO

Aboveground biomass (AGB) and leaf area index (LAI) are important indicators to measure crop growth and development. Rapid estimation of AGB and LAI is of great significance for monitoring crop growth and agricultural site-specific management decision-making. As a fast and non-destructive detection method, unmanned aerial vehicle (UAV)-based imaging technologies provide a new way for crop growth monitoring. This study is aimed at exploring the feasibility of estimating AGB and LAI of mung bean and red bean in tea plantations by using UAV multispectral image data. The spectral parameters with high correlation with growth parameters were selected using correlation analysis. It was found that the red and near-infrared bands were sensitive bands for LAI and AGB. In addition, this study compared the performance of five machine learning methods in estimating AGB and LAI. The results showed that the support vector machine (SVM) and backpropagation neural network (BPNN) models, which can simulate non-linear relationships, had higher accuracy in estimating AGB and LAI compared with simple linear regression (LR), stepwise multiple linear regression (SMLR), and partial least-squares regression (PLSR) models. Moreover, the SVM models were better than other models in terms of fitting, consistency, and estimation accuracy, which provides higher performance for AGB (red bean: R 2 = 0.811, root-mean-square error (RMSE) = 0.137 kg/m2, normalized RMSE (NRMSE) = 0.134; mung bean: R 2 = 0.751, RMSE = 0.078 kg/m2, NRMSE = 0.100) and LAI (red bean: R 2 = 0.649, RMSE = 0.36, NRMSE = 0.123; mung bean: R 2 = 0.706, RMSE = 0.225, NRMSE = 0.081) estimation. Therefore, the crop growth parameters can be estimated quickly and accurately using the models established by combining the crop spectral information obtained by the UAV multispectral system using the SVM method. The results of this study provide valuable practical guidelines for site-specific tea plantations and the improvement of their ecological and environmental benefits.

14.
J Sci Food Agric ; 102(4): 1540-1549, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424545

RESUMO

BACKGROUND: Accurate and efficient evaluation of the effect of nitrogen application rate on tea quality is of great significance for nitrogen management in a tea garden. However, previous methods were all through soil or leaf sampling, using biochemical methods for laboratory testing. These methods are not only less one-time detection samples, but also time-consuming, laborious and inefficient. Therefore, the development of fast, efficient and non-destructive diagnostic methods is an important goal in this field. RESULTS: We obtained spectral information on the tea canopy using a multispectral camera carried by an unmanned aerial vehicle (UAV), and extracted the average DN value of the experimental plot by environmental visual imagery (ENVI); we finally obtained 28 spectral parameters. By analyzing the correlation between spectral parameters and ground parameters measured synchronously, five spectral parameters with high correlation were selected. Finally, the prediction models of tea nitrogen, polyphenol and amino acid content were established by using support vector machine (SVM), partial least squares and backpropagation neural network. Through modeling comparison and coefficient verification, the results show that the ground parameters measured in the laboratory were in good agreement with the results estimated by the model. The SVM model had the best performance in predicting nitrogen and tea polyphenol content, with R2  = 0.7583 and 0.7533, root mean square error of prediction (RMSEP) = 0.4086 and 0.3392, and normalized RMSEP (NRMSEP) = 1.23 and 1.28, respectively. The partial least squares regression model had the best performance in predicting amino acid content, with R2  = 0.7597, RMSEP = 0.1176 and NRMSEP = 4.10. CONCLUSION: The results show that the model based on UAV image data and machine learning algorithm can effectively detect the main biochemical components of the tea plant, which provides an important basis for tea garden management. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis , Nitrogênio , Análise dos Mínimos Quadrados , Nitrogênio/análise , Solo , Chá
15.
Front Plant Sci ; 12: 695102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490000

RESUMO

Effective evaluation of physiological and biochemical indexes and drought degree of tea plant is an important technology to determine the drought resistance ability of tea plants. At present, the traditional detection method of tea drought stress is mainly based on physiological and biochemical detection, which is not only destructive to tea plants, but also time-consuming and laborious. In this study, through simulating drought treatment of tea plant, hyperspectral camera was used to obtain spectral data of tea leaves, and three machine learning models, namely, support vector machine (SVM), random forest (RF), and partial least-squares (PLS) regression, were used to model malondialdehyde (MDA), electrolyte leakage (EL), maximum efficiency of photosystem II (Fv/Fm), soluble saccharide (SS), and drought damage degree (DDD) of tea leaves. The results showed that the competitive adaptive reweighted sampling (CARS)-PLS model of MDA had the best effect among the four physiological and biochemical indexes (Rcal = 0.96, Rp = 0.92, RPD = 3.51). Uninformative variable elimination (UVE)-SVM model was the best in DDD (Rcal = 0.97, Rp = 0.95, RPD = 4.28). Therefore, through the establishment of machine learning model using hyperspectral imaging technology, we can monitor the drought degree of tea seedlings under drought stress. This method is not only non-destructive, but also fast and accurate, which is expected to be widely used in tea garden water regime monitoring.

16.
Front Cell Dev Biol ; 9: 646386, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898435

RESUMO

Osteoarthritis (OA) is a chronic articular disease characterized by cartilage degradation, subchondral bone remodeling and osteophyte formation. Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) has not been fully investigated in the pathogenesis of OA. In this study, we found that SHP2 expression was significantly increased after interleukin-1ß (IL-1ß) treatment in primary mouse chondrocytes. Inhibition of SHP2 using siRNA reduced MMP3, MMP13 levels, but increased AGGRECAN, COL2A1, SOX9 expression in vitro. On the contrary, overexpression of SHP2 exerted the opposite results and promoted cartilage degradation. Mechanistically, SHP2 activated Wnt/ß-catenin signaling possibly through directly binding to ß-catenin. SHP2 also induced inflammation through activating Mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways. Our in vivo studies showed that SHP2 knockdown effectively delayed cartilage destruction and reduced osteophyte formation in the mouse model of OA induced by destabilization of the medial meniscus (DMM). Altogether, our study identifies that SHP2 is a novel and potential therapeutic target of OA.

17.
Sci Rep ; 11(1): 2201, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500426

RESUMO

This study aims to develop an artificial intelligence (AI)-based model to assist radiologists in pneumoconiosis screening and staging using chest radiographs. The model, based on chest radiographs, was developed using a training cohort and validated using an independent test cohort. Every image in the training and test datasets were labeled by experienced radiologists in a double-blinded fashion. The computational model started by segmenting the lung field into six subregions. Then, convolutional neural network classification model was used to predict the opacity level for each subregion respectively. Finally, the diagnosis for each subject (normal, stage I, II, or III pneumoconiosis) was determined by summarizing the subregion-based prediction results. For the independent test cohort, pneumoconiosis screening accuracy was 0.973, with both sensitivity and specificity greater than 0.97. The accuracy for pneumoconiosis staging was 0.927, better than that achieved by two groups of radiologists (0.87 and 0.84, respectively). This study develops a deep learning-based model for screening and staging of pneumoconiosis using man-annotated chest radiographs. The model outperformed two groups of radiologists in the accuracy of pneumoconiosis staging. This pioneer work demonstrates the feasibility and efficiency of AI-assisted radiography screening and diagnosis in occupational lung diseases.


Assuntos
Aprendizado Profundo , Programas de Rastreamento , Modelos Biológicos , Pneumoconiose/diagnóstico , Bases de Dados como Assunto , Humanos , Pneumoconiose/diagnóstico por imagem , Pneumoconiose/patologia , Radiologistas , Reprodutibilidade dos Testes
18.
Methods Mol Biol ; 2195: 263-275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32852769

RESUMO

Germ cell tumors (GCTs) are a rare disease, but they account for 15% of all malignancies diagnosed during adolescence. The biological mechanisms underpinning their development are only starting to be explored. Current GCT treatment may be associated with significant toxicity. Therefore, there is an urgent need to understand the molecular basis of GCT and identify biomarkers to tailor the therapy for individual patients. However, this research is severely hamstrung by the rarity of GCTs in individual hospitals/institutes. A publicly available genomic data commons with GCT datasets compiled from different institutes/studies would be a valuable resource to facilitate such research. In this study, we first reviewed publicly available web portals containing GCT genomics data, focusing on comparing data availability, data access, and analysis tools, and the limitations of using these resources for GCT molecular studies. Next, we specifically designed a GCT data commons with a web portal, GCT Explorer, to assist the research community to store, manage, search, share, and analyze data. The goal of this work is to facilitate GCT molecular basis exploration and translational research.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Suscetibilidade a Doenças , Neoplasias Embrionárias de Células Germinativas/etiologia , Biologia Computacional/métodos , Segurança Computacional , Estudos de Associação Genética/métodos , Genoma , Genômica/métodos , Humanos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Embrionárias de Células Germinativas/patologia , Fenótipo , Interface Usuário-Computador , Navegador
19.
bioRxiv ; 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32908981

RESUMO

The outbreak of the 2019 Novel Coronavirus (SARS-CoV-2) rapidly spread from Wuhan, China to more than 150 countries, areas, or territories, causing staggering numbers of infections and deaths. In this study, bioinformatics analyses were performed on 5,568 complete genomes of SARS-CoV-2 virus to predict the T cell and B cell immunogenic epitopes of all viral proteins, which formed a systematic immune vulnerability landscape of SARS-CoV-2. The immune vulnerability and genetic variation profiles of SARS-CoV were compared with those of SARS-CoV and MERS-CoV. In addition, a web portal was developed to broadly share the data and results as a resource for the research community. Using this resource, we showed that genetic variations in SARS-CoV-2 are associated with loss of B cell immunogenicity, an increase in CD4+ T cell immunogenicity, and a minimum loss in CD8+ T cell immunogenicity, indicating the existence of a curious correlation between SARS-CoV-2 genetic evolutions and the immunity pressure from the host. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic/vaccine development and mechanistic research.

20.
JCO Clin Cancer Inform ; 4: 555-566, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32568554

RESUMO

Germ cell tumors (GCTs) are considered a rare disease but are the most common solid tumors in adolescents and young adults, accounting for 15% of all malignancies in this age group. The rarity of GCTs in some groups, particularly children, has impeded progress in treatment and biologic understanding. The most effective GCT research will result from the interrogation of data sets from historical and prospective trials across institutions. However, inconsistent use of terminology among groups, different sample-labeling rules, and lack of data standards have hampered researchers' efforts in data sharing and across-study validation. To overcome the low interoperability of data and facilitate future clinical trials, we worked with the Malignant Germ Cell International Consortium (MaGIC) and developed a GCT clinical data model as a uniform standard to curate and harmonize GCT data sets. This data model will also be the standard for prospective data collection in future trials. Using the GCT data model, we developed a GCT data commons with data sets from both MaGIC and public domains as an integrated research platform. The commons supports functions, such as data query, management, sharing, visualization, and analysis of the harmonized data, as well as patient cohort discovery. This GCT data commons will facilitate future collaborative research to advance the biologic understanding and treatment of GCTs. Moreover, the framework of the GCT data model and data commons will provide insights for other rare disease research communities into developing similar collaborative research platforms.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias , Adolescente , Estudos de Coortes , Humanos , Disseminação de Informação , Neoplasias Embrionárias de Células Germinativas/epidemiologia , Neoplasias Embrionárias de Células Germinativas/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...